Abstract

—This article presents a novel optimal design for a permanent magnet excitation transverse flux linear motor with an inner mover using bacterial foraging optimization. The target is maximizing the motor thrust force, which is the most important quantity in linear electric drives. The stator pole length, air-gap length, winding window width, and stator pole width define the search space for the optimization problem. The response surface methodology is used to build the mathematical model of the motor thrust force in terms of the design variables. It can create an objective function easily, and great computational time is saved. Finite-element computations are used for numerical experiments on the geometrical design variables to determine the coefficients of a second-order analytical model for the response surface methodology. The bacterial foraging optimization technique is used as a searching tool under the constraints of design variables for design optimization of the transverse flux linear motor to improve the motor thrust force. The effectiveness of the proposed bacterial foraging optimization model is then compared with that of both genetic algorithm and particle swarm optimization models. With this proposed bacterial foraging optimization technique, the thrust force of the initially designed transverse flux linear motor can be increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call