Abstract
BackgroundResearch in humans and mice suggests that obesity influences the abundance and diversity of gastrointestinal (GI) microbiota, and that an “obese microbiome” influences energy metabolism and fat storage in the host. Microbiota membership and composition have been previously assessed in healthy cats. However, research investigating the effects of obesity and weight loss on the cat’s fecal microbiota is limited. Therefore, this study’s objective was to evaluate differences in fecal microbial abundance and biodiversity, as well as serum cobalamin and folate concentrations in obese cats, before and after weight loss, and compare to lean cats.Fourteen lean and 17 obese healthy client-owned cats were fed a veterinary therapeutic weight loss food at maintenance energy requirement for 4 weeks. At the end of week 4, lean cats finished the study, whereas obese cats continued with a 10-week weight loss period on the same food, fed at individually-tailored weight loss energy requirements. Body weight and body condition score were recorded every 2 weeks throughout the study. At the end of each period, a fecal sample and food-consumption records were obtained from the owners, and serum cobalamin and folate concentrations were analysed. DNA was extracted from fecal samples, polymerase chain reaction (PCR) was performed, and products were sequenced using next-generation sequencing (Illumina MiSeq).ResultsNo significant differences in the relative abundance of taxa and in biodiversity indices were observed between cats in either group (P > 0.05 for all tests). Nevertheless, some significantly enriched taxa, mainly belonging to Firmicutes, were noted in linear discriminant analysis effect size test in obese cats before weight loss compared to lean cats. Serum cobalamin concentrations were significantly higher in lean compared to obese cats both before and after weight loss. Serum folate concentrations were higher in obese cats before weight loss compared to after.ConclusionsThe association between feline obesity and the fecal bacterial microbiota was demonstrated in enriched taxa in obese cats compared to lean cats, which may be related to enhanced efficiency of energy-harvesting. However, in obese cats, the fecal microbial abundance and biodiversity were only minimally affected during the early phase of a standardized weight loss plan.
Highlights
Research in humans and mice suggests that obesity influences the abundance and diversity of gastrointestinal (GI) microbiota, and that an “obese microbiome” influences energy metabolism and fat storage in the host
Fourteen lean and 17 obese cats were enrolled into the study
Results from this cat were included for the obese cats before weight loss (OBWL) time point, but not for the obese cats after weight loss (OAWL) time point
Summary
Research in humans and mice suggests that obesity influences the abundance and diversity of gastrointestinal (GI) microbiota, and that an “obese microbiome” influences energy metabolism and fat storage in the host. Research investigating the effects of obesity and weight loss on the cat’s fecal microbiota is limited. This study’s objective was to evaluate differences in fecal microbial abundance and biodiversity, as well as serum cobalamin and folate concentrations in obese cats, before and after weight loss, and compare to lean cats. Fourteen lean and 17 obese healthy client-owned cats were fed a veterinary therapeutic weight loss food at maintenance energy requirement for 4 weeks. At the end of week 4, lean cats finished the study, whereas obese cats continued with a 10-week weight loss period on the same food, fed at individually-tailored weight loss energy requirements. It is suggested that lipopolysaccharide (LPS), a structural component of the external membrane of gram-negative bacteria, triggers inflammation in the host through the innate immune response [17]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.