Abstract

The type-I regulatory subunit (RI) of the cyclic AMP-dependent protein kinase (PKA) from Chinese hamster ovary (CHO) cells has been cloned and expressed in a strain of BL21(DE3) Escherichia coli lacking adenylate cyclase [BL21(DE3)/delta cya]. RI expressed in this bacterial system free of cyclic AMP is soluble and can reconstitute functional PKA. Recombinant CHO C alpha is predominantly insoluble with some active soluble protein. C beta is entirely insoluble and inactive. Soluble recombinant RI and soluble recombinant C alpha can associate in vitro and be activated by cyclic AMP. Six site-directed mutations of RI were generated to study the interaction of cyclic AMP with RI and RI-C alpha subunit interactions. Four cyclic AMP-binding-site point mutants were generated [W261R (tryptophan to arginine at position 261), a novel mutation in site A; V376G, a novel mutation in site B; G200E (site A), and Y370F (site B), previously described in bovine RI were introduced into the CHO RI for comparison purposes]. Mutants W261R, Y370F, and G200E demonstrated decreased 8-N3-[3H]cyclic AMP binding as well as 5-fold reduced affinity for [3H]cyclic AMP, with threefold increased EC50 values for cyclic AMP activation of kinase activity from reconstituted mutant holoenzymes. The mutation at V376G did not alter cyclic AMP binding or activation by cyclic AMP of mutant holoenzyme. A truncation mutant, G200Stop, which lacks both cyclic AMP-binding sites, did not bind cyclic AMP but can inhibit C alpha subunit activity. A novel mutation outside the cyclic AMP-binding regions of RI (V89A) weakened the interaction with C alpha indicated by a 7-fold lower EC50 for mutant holoenzyme activation by cyclic AMP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.