Abstract

Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.

Highlights

  • Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions

  • Other more recent bacterial EPSs that have been reported are FucoPol, a heteropolysaccharide produced by Enterobacter A47, which is composed of fucose, galactose, glucose, and glucoronic acid with the nonsaccharide substituents pyruvate, succinate, and acetate [25] and GalactoPol, a polysaccharide produced by Pseudomonas oleovorans aNRRL B-14682 mainly formed by galactose and other saccharides as glucose, mannose, and rhamnose in lower amounts [26]

  • We focus on the ability of bacterial EPSs to act as reducing and stabilizing agents during the synthesis of metallic nanoparticles for applications in biology and the medical field

Read more

Summary

Main Bacterial EPSs

Xanthan gum is a heteropolysaccharide EPS produced by the genus Xanthomonas and is the first natural biopolymer produced at an industrial scale [10, 17]. Other more recent bacterial EPSs that have been reported are FucoPol, a heteropolysaccharide produced by Enterobacter A47, which is composed of fucose, galactose, glucose, and glucoronic acid with the nonsaccharide substituents pyruvate, succinate, and acetate [25] and GalactoPol, a polysaccharide produced by Pseudomonas oleovorans aNRRL B-14682 mainly formed by galactose and other saccharides as glucose, mannose, and rhamnose in lower amounts [26]. Both of these EPSs are obtained by their respective bacteria using glycerol as sole carbon source.

Application of EPSs
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call