Abstract
The global seagrass bed ecosystem acts as a natural ecological barrier in the littoral coastal zone. In recent years, this ecosystem has suffered from serious eutrophication and destruction caused by the continuous expansion of aquaculture. However, our understanding of the influence of aquaculture on the bacterial community remains limited. In this study, we used 16S amplicon sequencing to evaluate the impact of aquaculture feed extract solution on the composition and function of bacterial epiphytes and endophyte communities of the core seagrass from the seagrass bed ecosystem in Hainan, Thalassia hemprichii. The feed extract solution was the main factor that significantly affected the bacterial epiphyte and endophyte community structure of seagrass leaves but had no marked effect on alpha diversity was observed. Additionally, the bacterial epiphyte and endophyte community of the T. hemprichii leaves alleviated the effects of organic matter, sulfide, and nutrients caused by aquaculture wastewater. The feed extract solution promoted the proliferation of Bacteroidales, Vibrio, Desulfobulbaceae, Desulfobacteraceae, Pseudoalteromonas, Paludibacter, Marinomonas, and Pseudomonas in the leaves and root of T. hemprichii, which can effectively improve the digestibility of eutrophication. In fact, Desulfobacteraceae and Desulfobulbaceae can reduce sulfate to sulfide and oxidize sulfide to sulfur within seagrass, indicating that the increase in Desulfobulbaceae and Desulfobacteraceae facilitated the accumulation of sulfide with the treatment of feed extract solution, which may be the reason for the degradation of seagrass caused by aquaculture wastewater containing high concentrations of organic pollutants. These results suggest that although seagrass beds can withstand low concentrations of aquaculture pollutants, sulfide emissions should be minimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.