Abstract
In terms of resistance to extreme environmental stresses, the bacterial spore represents a pinnacle of evolution. Spores are highly resistant to a wide variety of physical stresses such as: wet and dry heat, UV and gamma radiation, oxidizing agents, chemicals, and extremes of both vacuum and ultrahigh hydrostatic pressure. Some of the molecular mechanisms underlying spore resistance properties have been elucidated in the laboratory, and involve both: (i) protection of vital spore macromolecules during dormancy, and (ii) repair of damaged macromolecules during germination. Our group has recently become interested in testing if the laboratory model of spore UV resistance is relevant to spore persistence in the environment. We have constructed a number of Bacillus subtilis strains which are defective in various DNA repair systems and spore structural components. Using spores of these strains, we have been exploring: (i) the types of damage induced in DNA by the UV-B and UV-A components of sunlight; (ii) the relative contribution of the major spore DNA repair systems to spore solar radiation resistance; and (iii) the role of spore structural components such as the spore coats and dipicolinic acid (DPA) in attenuation of the lethal and mutagenic effects of solar UV. The current data are reviewed with the ultimate goal of obtaining a complete model describing spore persistence and longevity in the terrestrial solar UV radiation environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.