Abstract
BackgroundGlossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches.Results113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes.ConclusionThis study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
Highlights
Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT)
The largest groups of bacteria isolated from G. pallidipes from this coastal area belonged to the Firmicutes which accounted for 87% of total bacteria; followed by Actinobacteria 7.7%; Proteobacteria (5.5%) and Bacteroidetes 0.3% (Table 1)
Members of four bacterial phyla were isolated from enrichments performed under anaerobiosis (83% for Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes) where as members of only two phyla were isolated under aerobiosis (90% Firmicutes and 10% Proteobacteria)
Summary
Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches. Human African Trypanosomiasis (HAT) is transmitted by tsetse flies which belong to the genus Glossina. There has been an increased research interest on midgut microbial flora and their likely role to be played in the refractoriness of tsetse flies and in the epidemiology of African Trypanosomiasis. We report on the culturable diversity of bacteria from the gut of Glossina pallidipes species collected from the non HAT (non sleeping sickness) area along the coastal area of Tanzania, Tanga region
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.