Abstract

Diesel fuel storage tanks are not hostile environments for microorganisms and tend to form sludges in the water deposited at the bottom of the tanks. The lack of nutrient, carbon and energy limitations within these habitats boost the abundance and the metabolic activity of microorganisms providing microbial hotspots with high growing rates of diesel degradation (0.10 ± 0.021d-1). Five different Phyla (Thermotogae, Spirochaetes, Firmicutes, Bacteroidetes Proteobacteria) were identified within the aqueous/sludge phase from in situ diesel storage tanks, by cultured independent molecular surveys using the 16S rDNA gene fragment. The identified dominant strains were Geotoga aestuarianus, Flavobacterium ceti, Spirochaeta thermophila, Propionispira arboris, Sporobacterium olearium and Dysgonomonas genera. The altitude where the storage tanks are located and the organic carbon concentration within the aqueous/sludge phases affected the bacterial diversity. Therefore, the more diverse the microbial communities are, the more probability of the presence of bacteria with capacity to metabolized diesel and eliminate organic matter. Despite, only phosphate showed an effect on the bacterial distribution within the storage tanks, there was an apparent lack of deterministic process in structuring microbial communities. Consequently, preventative protocols are a priority to avoid the microbial growth within diesel fuel storage tanks. A new focus of this worldwide problem within the oil industry would be to explore deeply the wide range of metabolic and adaptive capacities of these microorganisms. These microbial consortia are potential tools with new specific services to apply in bioremediation among others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.