Abstract
BackgroundRivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment.ResultsThe spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemäenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR).The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p < 0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 ± 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 ± 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66–80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (≥13%) than in other groups (≤3%). Acidobacteria was more abundant in the DW treatment process (≥13%) than in others (≤2%). In total, the share of PHRB reads was higher in sewage and surface water than in the DW treatment samples. The seasonal effect in bacterial communities was observed only on surface water samples, with the lowest diversity during summer.ConclusionsThe low bacterial diversity and absence of PHRB read in the DW samples indicate AGR can produce biologically stable and microbiologically safe drinking water. Furthermore, the significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health.
Highlights
Assuring an adequate supply of high-quality raw water for the production of drinking water (DW) is a challenge worldwide
The low bacterial diversity and absence of potential health-related bacteria (PHRB) read in the DW samples indicate artificial groundwater recharge (AGR) can produce biologically stable and microbiologically safe drinking water
The significantly different bacterial communities at the pollution sources compared to surface water and DW samples highlight the importance of effective wastewater treatment for protecting the environment and human health
Summary
Assuring an adequate supply of high-quality raw water for the production of drinking water (DW) is a challenge worldwide. Surface waters such as rivers and lakes near cities fulfill the demand for raw water [2]. Groundwater can be a good source of high-quality raw water for DW production. The high drinking water demand in some geographical locations may require the use of artificial groundwater recharge (AGR) [29]. In Finland, for example, AGR and groundwater together fulfill about 60% of the raw water demand for DW production, and the rest of the demand is fulfilled from surface waters [2]. Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. Understanding the bacterial community characteristics —from the source of contamination, through the watershed to the DW production process—may help safeguard human health and the environment
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.