Abstract

Infection of a diabetic foot ulcer (DFU) is common. More than the half of DFUs become infected and 15-20% of them necessitate amputation in course of treatment. Diabetic foot infection (DFI) is therefore the major cause for non-traumatic lower limb amputation in Germany. Prompt and effective treatment of DFI is mandatory to safe limbs and lives. We investigated if there are relevant differences in evoked inflammatory response between different species and age-separated groups. We further investigated if there is an impact of ulcer localization on bacterial diversity. For a 12-month period, we investigated 353 individuals with infected DFU, their laboratory results and bacterial diversity at first-time visit in a Diabetic Foot Care Center in Southern Germany. The ulcer microbiota was dominated by gram-positive species, primary Staphylococcus aureus. The gram-negative sector was mainly formed by Pseudomonas aeruginosa and Enterobacteriaceae (Proteus spp., Enterobacter spp., Escherichia coli and Klebsiella spp.). With increase in age, P. aeruginosa and S. aureus became more frequent, while Streptococci decreased. Ischemic and/or deep wounds were more likely to bear gram-negative species. Inflammatory response did not differ between gram-positive and gram-negative species, while Streptococci and Proteus spp. induced the highest serum inflammation reaction in their category. Streptococci, Enterobacter spp. and E. coli were more frequent in summer, while Enterococci spp., coagulase-negative Staphylococci and P.aeruginosa were more prevalent in winter half-year. DFIs of the forefoot and plantar side are mostly caused by gram-positive species, while Enterobacteriaceae were most frequent in plantar ulcerations. Gram-positive species dominate bacterial spectrum in DFI. With increase in age, S. aureus, Streptococci and Pseudomonas aeruginosa became more frequent. The inflammatory response did not differ significantly between different species, but gram-negative species were slightly but not significant more frequent in ischemic wounds. Climatic distinction like summer or winter half-year as well as foot ulcer localization seems to influence bacterial diversity in DFUs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.