Abstract

Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.