Abstract
Peptide affinity reagent technology including bacterial display encapsulates an in vitro analog of classical Darwinian evolution through a physical linkage between polypeptide sequence and the encoding of genetic information. Similar to the inate human imune system a unique binder is isolated, however, in this directed evolution method a large library displaying billions of diverse peptide sequences is created and the sythetic binder to the target of interest is determined. Subsequently the synthetic reagent is mass-produced for use in the specific biosensing application (Park & Cochran, 2010; Stratis-Cullum & Sumner 2008). Currently, a number of systems, including messenger ribonucleic acid (mRNA) and ribosome display (Wilson, Keefe, & Szostak, 2001 ), eukaryotic virus display (Bupp and Roth, 2002; Muller, 2003), and bacterial and yeast surface display (Georgiou et al., 1997, Boder & Wittrup, 1997), are used to rapidly generate affinity reagents that can be used for diagnostics, proteomics, and therapeutic applications (Kodadek, 2001; Nixon, 2002). Bacterial cell surface display is advantageous because the use of bacterial cells simplifies the polypeptide selection method and enables fast screening of potential recognition elements typically using fluorescence activated cell-sorting (FACS) and/or magnetic activated cellsorting (MACS). Polypeptide affinity reagents can offer more stable alternatives to antibody technology, enabling more rugged application in the field (e.g., enhanced thermal stability). A key advantage of bacterial display technology over traditional antibody creation as well as other peptide display alternatives is that it offers an strategy for generating tailor-made affinity ligands in a very short time period of several days (Georgiou et al., 1997; Bessette, Rice and Daugherty 2004), see Figure 1. The development of a bacterial display system suitable for robust reagent discovery has proven challenging (Lee, Choi & Xu, 2003). There are three main challenges in creating a high speed affinity ligand isolation technology against unknown/un-catalogued pathogens: (1) creation of a large (high diversity) and robust cell based library, (2) creation of an ultrahigh throughput, disposable screening system, and (3) gaining a fundamental understanding of the factors which influence binder performance along with this understanding the development of methodologies to enable universal isolation and optimization of ligand binder performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.