Abstract

Important losses in poplar productivity occur because of susceptibility to microbial pathogens. To enhance disease resistance in susceptible genotypes, the gene coding for D4E1, a synthetic antimicrobial peptide consisting of 17 amino acid residues, was introduced into poplar (Populus tremula L. x Populus alba L.) via Agrobacterium-mediated transformation. Four kanamycin-resistant transformants were selected based on significant accumulation of the D4E1 transcript and confirmed by reverse transcription-polymerase chain reaction and RNA dot-blot analysis. These transgenic poplar lines were tested for resistance to Agrobacterium tumefaciens, Xanthomonas populi pv. populi and Hypoxylon mammatum (Wahl.) Miller. One transgenic poplar line, Tr23, bearing the highest transcript accumulation for the D4E1 gene, showed a significant reduction in symptoms caused by A. tumefaciens and X. populi. However, none of the transgenic poplar lines showed a significant difference in disease response to the fungal pathogen H. mammatum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.