Abstract

Phthalate isomers and their esters are used heavily in various industries. Excess use and leaching from the product pose them as major pollutants. These chemicals are toxic, teratogenic, mutagenic and carcinogenic in nature. Various aspects like toxicity, diversity in the aerobic bacterial degradation, enzymes and genetic organization of the metabolic pathways from various bacterial strains are reviewed here. Degradation of these esters proceeds by the action of esterases to form phthalate isomers, which are converted to dihydroxylated intermediates by specific and inducible phthalate isomer dioxygenases. Metabolic pathways of phthalate isomers converge at 3,4-dihydroxybenzoic acid, which undergoes either ortho- or meta- ring cleavage and subsequently metabolized to the central carbon pathway intermediates. The genes involved in the degradation are arranged in operons present either on plasmid or chromosome or both, and induced by specific phthalate isomer. Understanding metabolic pathways, diversity and their genetic regulation may help in constructing bacterial strains through genetic engineering approach for effective bioremediation and environmental clean up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.