Abstract

Abstract The deep waters of the Sulu Sea are characterized by relatively high and constant water temperatures and low oxygen concentrations. To examine the effect of these characteristics on the bacterial community structure, the culture-independent molecular method was applied to samples from the Sulu Sea and the adjacent areas. DNA was extracted from environmental samples, and the analysis was carried out on PCR-amplified 16S rDNA; fragments were analyzed by denaturing gradient gel electrophoresis (DGGE) and nonmetric multidimensional scaling analysis. Stations in the Sulu Sea and the adjacent areas showed much more prominent vertical stratification of bacterial community structures than horizontal variation. As predominant sequences, cyanobacteria and α -proteobacteria at 10 m depth, δ -proteobacteria at 100 m depth, and green nonsulfur bacteria below 1000 m depth were detected in all sampling areas. High temperatures and low oxygen concentrations are thought to be minor factors in controlling community structure; the quantity and quality of organic materials supplied by the sinking particles, and hydrostatic pressure are believed to be important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.