Abstract

The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed.The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experiments, suggesting that the biofilm in the aerobic compartment might have sustained the complete nitrification of the influent ammonia, even for concentrations higher than 100 mg L−1. The irreversible resistance due to superficial cake deposition was the mechanism that mostly affected the membrane fouling. Moreover, it was noticed an increase of the resistance due pore blocking likely due to the increase of the EPSBound fraction that could derive by biofilm detachment.The bacterial strains isolated from aerobic tank are wastewater bacteria known for exhibiting efficient heterotrophic nitrification–aerobic denitrification and producing biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.