Abstract

We performed a molecular microbial ecological analysis in the northeastern Chukchi Sea in order to characterize bacterial community structure and genetic potential for biogeochemical cycling and oil biodegradation in a region targeted for oil and gas exploration (Burger lease area). Samples were collected from the surface, middle (20m), and bottom (2–3m above seafloor) of the water column during the open-water season of August and September 2012 at 17 different locations. We determined bacterial community structure with 16S rRNA genes sequencing and detected functional genes, including an array of oil biodegradation and biogeochemical cycling (carbon, nitrogen and phosphorus cycling) genes, using the GeoChip 5.0 microarray, and then correlated molecular data to contextual physical and biogeochemical factors. Bacterial community structure differed significantly by depth (surface water vs. bottom water) and between sampling dates (August vs. September). While the relative abundance of major functional gene categories did not differ with depth, the abundance of individual functional genes for carbon cycling, nitrogen cycling, organic contaminant remediation, phosphorus cycling, sulfur cycling, virulence, and viruses differed between surface and bottom seawater samples. Aerobic oil degradation genes and taxa known to include oil-degrading bacteria were found at all three depths. These findings support previous observations that two different water masses contribute to a stratified water column in the summer open-water season of the Burger lease area, but indicate that potential function is fairly similar with depth despite differences in temperature, water chemistry, bacterial community structure, and individual functional gene alleles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call