Abstract
Membrane-aerated biofilm reactor (MABR) is a promising wastewater treatment process. Although bacteria inhabiting the MABR biofilm are important in wastewater treatment, the community composition and its correlation with operating conditions were less clear. A laboratory-scale MABR was designed to investigate the shift of bacterial community through a complete operational process by pyrosequencing the bacterial 16S rRNA genes. From around 19,000 sequences, 175 bacterial genera were retrieved, mainly belonging to Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, and Actinobacteria. A large number of unclassified bacterial sequences were also detected in the biofilm, suggesting a wide variety of uncharacterized species in MABR. Redundancy analysis (RDA) revealed that influent chemical oxygen demand (COD), NH4-N, and NaHCO3 concentrations could exert distinct influences on the composition of the bacterial community. The influent COD and NaHCO3 concentrations stimulated proliferation of denitrification-related species such as Dokdonella, Azospira, Hydrogenophaga, Rhodocyclaceae, and Thauera, while inhibiting the growth of Acidovorax and Sinobacteraceae. Some denitrifying Thermomonas spp. tended to survive in NH4-N-rich environments, while Flavobacterium preferred to inhabit NH4-N-poor or COD-rich environments. Conversely, the influent NH4-N and NaHCO3, to some extent, appeared to be the growth-promoting factors for nitrifying bacteria. Furthermore, the presence of potential aerobic denitrifiers such as Comamonas, Enterobacter, and Aeromonas indicated that MABR could have the capability of simultaneous aerobic and anoxic denitrification particularly during treatment of low-ammonia nitrogen sewage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.