Abstract

Open algal ponds are likely to succumb to unpredictable, devastating crashes by one or several deleterious species. Developing methodology to mitigate or prevent pond crashes will increase algal biomass production, drive down costs for algae farmers, and reduce the risk involved with algae cultivation, making it more favorable for investment by entrepreneurs and biotechnology companies. Here, we show that specific algal-bacterial co-cultures grown with the green alga Microchloropsis salina prevented grazing by the marine rotifer, Brachionus plicatilis. We obtained seven algal-bacterial co-cultures from crashed rotifer cultures, maintained them in co-culture with Microchloropsis salina, and used a microalgal survival assay to determine that algae present in each co-culture were protected from rotifer grazing and culture crash. After months of routinely diluting and maintaining these seven algal-bacterial co-cultures, we repeated the assay and found the opposite result: none of the seven bacterial communities protected the microalgae from rotifer grazing. We performed 16S rRNA gene amplicon sequencing on the protective and nonprotective co-culture samples and identified substantial differences in the makeup of the bacterial communities. Protective bacterial communities consisted primarily of Alphaproteobacteria (Rhodobacteraceae) and Gammaproteobacteria (Marinobacter, Pseudomonas, Methylophaga) while nonprotective bacterial communities were less diverse and missing many putatively crucial members. We compared the seven protective communities with the seven nonprotective communities and we correlated specific bacterial amplicon sequence variants with algal protection. With these data, our future work will aim to define and develop an engineered-microbiome that can stabilize industrial Microchloropsis salina cultures by protecting against grazer-induced pond crashes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.