Abstract
BackgroundOn the front lines of climate change, glacier termini play crucial roles in linking glaciers and downstream ecosystems during glacier retreat. However, we lack a clear understanding of biological processes that occur in surface and basal ice at glacier termini.MethodsHere, we studied the bacterial communities in surface ice and basal ice (the bottom layer) of a glacier terminus in the Yangtze River Source, Qinghai–Tibet Plateau.ResultsSurface and basal ice harbored distinct bacterial communities but shared some core taxa. Surface ice communities had a higher α-diversity than those in basal ice and were dominated by Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria while basal ice was dominated by Firmicutes and Proteobacteria. The bacterial communities were also substantially different in functional potential. Genes associated with functional categories of cellular processes and metabolism were significantly enriched in surface ice, while genes connected to environmental information processing were enriched in basal ice. In terms of biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur, bacterial communities in surface ice were enriched for genes connected to aerobic carbon fixation, aerobic respiration, denitrification, nitrogen assimilation, nitrogen mineralization, sulfur mineralization, alkaline phosphatase, and polyphosphate kinase. In contrast, bacterial communities in basal ice were enriched for genes involved in anaerobic carbon fixation, fermentation, nitrate reduction, 2-aminoethylphosphonic acid pathway, G3P transporter, glycerophosphodiester phosphodiesterase, and exopolyphosphatase. Structural equation modeling showed that total nitrogen and environmental carbon:phosphorus were positively while environmental nitrogen:phosphorus was negatively associated with taxonomic β-diversity which itself was strongly associated with functional β-diversity of bacterial communities.ConclusionsThis study furthers our understanding of biogeochemical cycling of the mountain cryosphere by revealing the genetic potential of the bacterial communities in surface and basal ice at the glacier terminus, providing new insights into glacial ecology as well as the influences of glacier retreat on downstream systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.