Abstract

Introductory ParagraphInitial microbial colonization and later succession in the gut of human infants are linked to health and disease later in life. The timing of the appearance of the first gut microbiome, and the consequences for the early life metabolome, are just starting to be defined. Here we evaluated the gut microbiome, proteome, and metabolome in 88 African American newborns using fecal samples collected in the first few days of life. Gut bacteria became detectable using molecular methods by 16 hours after birth. Detailed analysis of the three most common species, Escherichia coli, Enterococcus faecalis, and Bacteroides vulgatus, did not suggest a genomic signature for neonatal gut colonization. The appearance of bacteria was associated with reduced abundance of approximately 50 human proteins, decreased levels of free amino acids, and an increase in products of bacterial fermentation, including acetate and succinate. Using flux balance modeling and in vitro experiments, we provide evidence that fermentation of amino acids provides a mechanism for the initial growth of Escherichia coli, the most common early colonizer, under anaerobic conditions. These results provide a deep characterization of the first microbes in the human gut and show how the biochemical environment is altered by their appearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.