Abstract

Bacterial small RNAs (sRNAs) in association with the chaperone protein Hfq regulate the expression of many target mRNAs. Since sRNAs’ action is crucial to engendering a response to changing environmental conditions, their activity needs to be regulated. One such mechanism occurs at the post-transcriptional level and involves sponge RNAs, which sequester sRNAs affecting their regulatory output. Both types of RNAs were identified on Hfq, but it is not known how Hfq interacts with RNA sponges and stimulates their base-pairing with sRNAs. Here, we used biochemical methods to demonstrate that sponge RNAs resemble sRNAs by their structure and their modes of Hfq binding. Hfq facilitates the annealing of AgvB and 3′ETSleuZ sponge RNAs to targeted sRNAs: GcvB and RybB, respectively, and each surface of the protein plays a particular role in the process. Moreover, we found that the efficiency of sponge RNA interactions with sRNAs can be improved; therefore, we propose that natural RNA sponges might not sequester sRNAs optimally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.