Abstract

In the natural habitat, bacteria have an ability to produce cellulose in the form of three-dimensional inter-woven nanofibrous network. As-produced bacterial cellulose is highly pure with exceptional properties such as high crystallinity, high degree of polymerization, high water retention capabilities, and greater mechanical properties. Upon pyrolysis, carbon nanofibers derived from bacterial cellulose are being utilized as high-capacity anode materials in lithium-ion batteries due to their structural stability, mechanical flexibility, high surface area, and open porous structure. Apart from nanofibrous architecture, bacterial cellulose provides an additional advantage of tuning their physiochemical properties in terms of morphology, porosity, crystallinity, and orientation besides incorporation of additives which resembles in the carbon nanofibers upon pyrolysis. This review highlights the recent advances in bacterial cellulose production and tuning of its properties followed by electrochemical performance of the derived carbon nanofibers. Strategies for modifications of bacterial cellulose network for further enhancement in lithium-ion battery performance are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.