Abstract

A bacterial cellulose–alginate (BCA) sponge, fabricated by a freeze-drying process, was successfully used as a yeast cell carrier for ethanol fermentation. The BCA sponge exhibited several advantageous properties, such as high porosity, appropriate pore size, strong hydrophilicity and high mechanical, chemical and thermal stabilities. BCA has an asymmetric structure, with a thin, dense outer layer covering an interior of interconnected macropores that are distributed throughout the sponge, which is effective for yeast immobilization. At 48h of the fermentation, the maximum ethanol concentration produced by the immobilized culture (IC) in the BCA carrier was about 100g/L, which was approximately 13% and 45% higher than that from the suspended culture (SC) and from IC in Ca-alginate matrix, respectively. Repeated-batch ethanol productions using IC in BCA carriers were also more stable than those using SC or IC in Ca-alginate matrix. The results of a 15 cycle repeated batch operation demonstrated that the system with IC in BCA exhibited superior long-term stability for ethanol fermentation with the average ethanol productivity at 1.9g/L h and the immobilized yield at 86%. The improved ethanol fermentation performance was mainly due to the water uptake ability and properly interconnected pore structure, which help to overcome limiting mass transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.