Abstract

The development of metallic lithium anode is restrained by lithium dendrite growth during cycling. The solid polymer electrolyte with high mechanical strength and lithium ion conductivity could be applied to inhibit lithium dendrite growth. To prepare the high‐performance solid polymer electrolyte, the environment‐friendly and cheap bacterial cellulose (BC) is used as filler incorporating with PEO‐based electrolyte owing to good mechanical properties and Li salts compatibility. PEO/LiTFSI/BC composite solid polymer electrolytes (CSPE) are prepared easily by aqueous mixing in water. The lithium ion transference number of PEO/LiTFSI/BC CSPE is 0.57, which is higher than PEO/LiTFSI solid polymer electrolyte (SPE) (0.409). The PEO/LiTFSI/BC CSPE exhibits larger tensile strength (4.43 MPa) than PEO/LiTFSI SPE (1.34 MPa). The electrochemical window of composite electrolyte is widened 1.43 V by adding BC. Density functional theory calculations indicate that flex of PEO chains around Li atoms is suppressed, suggesting the enhanced lithium ion conductivity. Frontier molecular orbitals results suggest that an unfavorable intermolecular charge transfer lead to achieve higher potential for BC composite electrolyte. All solid‐state Li metal battery with PEO/LiTFSI/BC CSPE delivers longer cycle life for 600 cycles than PEO/LiTFSI SPE battery (50 cycles). Li symmetrical battery using PEO/LiTFSI/BC CSPE could be stable for 1160 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.