Abstract
1. The route of l-threonine degradation was studied in four strains of the genus Pseudomonas able to grow on the amino acid and selected because of their high l-threonine aldolase activity. Growth and manometric results were consistent with the cleavage of l-threonine to acetaldehyde+glycine and their metabolism via acetate and serine respectively. 2. l-Threonine aldolases in these bacteria exhibited pH optima in the range 8.0-8.7 and K(m) values for the substrate of 5-10mm. Extracts exhibited comparable allo-l-threonine aldolase activities, K(m) values for this substrate being 14.5-38.5mm depending on the bacterium. Both activities were essentially constitutive. Similar activity ratios in extracts, independent of growth conditions, suggested a single enzyme. The isolate Pseudomonas D2 (N.C.I.B. 11097) represents the best source of the enzyme known. 3. Extracts of all the l-threonine-grown pseudomonads also possessed a CoA-independent aldehyde dehydrogenase, the synthesis of which was induced, and a reversible alcohol dehydrogenase. The high acetaldehyde reductase activity of most extracts possibly resulted in the underestimation of acetaldehyde dehydrogenase. 4. l-Serine dehydratase formation was induced by growth on l-threonine or acetate+glycine. Constitutively synthesized l-serine hydroxymethyltransferase was detected in extracts of Pseudomonas strains D2 and F10. The enzyme could not be detected in strains A1 and N3, probably because of a highly active ;formaldehyde-utilizing' system. 5. Ion-exchange and molecular exclusion chromatography supported other evidence that l-threonine aldolase and allo-l-threonine aldolase activities were catalysed by the same enzyme but that l-serine hydroxymethyltransferase was distinct and different. These results contrast with the specificities of some analogous enzymes of mammalian origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.