Abstract

The intensity of a fire is an important factor determining the recovery of soil microorganisms after a forest fire, since it can alter the quality and quantity of carbon sources. Recovery of the microbial community was studied in a Mediterranean pine forest soil subjected to different temperatures to simulate the short-term effects of fire intensity on bacterial and fungal growth, estimated using leucine incorporation for bacteria and acetate incorporation into ergosterol for fungi. Soil samples were heated for 15 min at 50, 80, 120, 200, 300, 400 and 500 °C. After inoculation with fresh soil, and adding water to achieve 60% WHC, the soils were incubated at 20 °C for 21 days. Bacterial growth was initially inhibited in the samples heated above 50 °C (totally inhibited ≥ 200 °C), but recovered within days to levels much higher than the control, except for the samples heated at 500 °C, where growth remained low throughout the incubation period due to the destruction of most of the organic matter. After the first week of incubation, the bacterial response decreased to values close to, but still above, that of the control. Samples heated at 200 °C showed the highest cumulative bacterial growth. Fungal growth was initially lower than in the control in all the heated samples (totally inhibited ≥ 200 °C). Fungal growth recovered slowly during incubation in soils heated at ≤ 300 °C, but the cumulative growth in heated soils did not exceed that in the control. No fungal growth was observed in samples heated at the two highest temperatures. Soil respiration was initially totally inhibited in soil heated at ≥ 200 °C, but recovered rapidly in all soils; the highest respiration being observed already 1 day after inoculation. This is the first time both fungal and bacterial growth has been directly estimated in heated soils. High soil pH favouring bacteria can explain these results, but the differences in fungal and bacterial responses suggest a competitive interaction between these groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call