Abstract

The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.

Highlights

  • Peatlands are wetland ecosystems which cover four million km2 and store a third of terrestrial carbon on a global basis[1, 2]

  • We found that the original vegetation (U.OV) microbial community remains distinct from the other zones for both bacteria and fungi, and this may be related to the fact that this stable area has retained deposited heavy metals

  • We show that six zones encompassing degraded bare peat and vegetation mosaics in an upland peatland support distinct microbial communities, which can be linked to natural processes and human intervention in the management of peatlands

Read more

Summary

Introduction

Peatlands are wetland ecosystems which cover four million km and store a third of terrestrial carbon on a global basis[1, 2]. One of the most south-westerly extensions of the European blanket bog is located in the Southern Pennines in northern England between the industrial cities of Manchester and Sheffield. Additional factors that have contributed to degradation include unmanaged fire, overgrazing, tourism, and climate change[13]. These degraded blanket bogs are at risk of becoming major sources of atmospheric carbon through erosional losses and aerobic mineralisation of peat resulting from water table draw-down[14, 15]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.