Abstract

Cleaning services are carried out in almost all sectors and branches of industry. Due to the above, cleaners are exposed to various harmful biological agents, depending on the tasks performed and the commercial sector involved. The aim of this study was to assess the exposure of cleaning workers to biological agents based on quantitative and qualitative characteristics of airborne microflora. A six-stage Andersen sampler was used to collect bioaerosols during the cleaning activities in different workplaces, including schools, offices, car services, healthy services and shops. Standard Petri dishes filled with blood trypticase soy agar and malt extract agar were used for bacterial and fungal sampling, respectively. The bioaerosol concentration values obtained during testing of selected workposts of cleaners were lower than the Polish recommended threshold limit values for microorganisms concentrations in public service. The most prevalent bacterial species in studied places were Gram-positive cocci (mainly of genera Micrococcus, Staphylococcus) and endospore-forming Gram-positive rods (mainly of genera Bacillus). Among the most common fungal species were those from genera Penicillium and Aspergillus. The size distribution analysis revealed that bioaerosols present in the air of workposts at shops, schools and car services may be responsible for nose and eye mucosa irritation and allergic reactions in the form of asthma or allergic inflammation in the cleaning workers. The study shows that occupational activities of cleaning workers are associated with exposure to airborne biological agents classified into risk groups, 1. and 2., according to their level of infection risk, posing respiratory hazard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.