Abstract

A diffusely venting chimney spire from the East Pacific Rise (9 degrees N) was analysed by petrographic thin sectioning and 16S rRNA gene cloning and sequencing in parallel, to correlate microbial community composition with mineralogy and inferred in situ conditions within the chimney mineral matrix. Both approaches indicated a zonation of the chimney spire into distinct microhabitats for different bacteria and archaea. The thermal gradient inferred from the mineral composition and porosity of the chimney was consistent with the distribution of bacterial and archaeal phylotypes in the chimney matrix. A novel phylogenetic lineage of euryarchaeota was found that co-occurred with clones related to cultured hyperthermophilic archaea. A few phylotypes related to mesophilic bacteria were found in the hot core of the chimney, indicating that seawater influx during retrieval and cooling of these highly porous structures can entrain microorganisms into chimney layers that are not their native habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.