Abstract

Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding 'open water' marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call