Abstract

The spatial arrangement of DNA probes on the electrode surface is of critical significance for the performance of electrochemical biosensors. However, rational control of the probe surface remains challenging. In this work, we develop a capture probe carrying a poly-adenine anchoring block to construct a programmable self-assembled monolayer for a "sandwich-type" electrochemical biosensor. We show that with a co-assembling strategy using a polyA capture probe and 6-mercapto-1-hexanol, the density of the probes on the gold electrode can be simply adjusted by the length of polyA. The electron-transfer effect and thus the hybridization efficiency can as well be optimized by tuning the polyA length. As a result, we obtained an excellent biosensor performance with a limit of detection as low as 5 fM for a synthetic DNA target. We demonstrate the practicability of this system by analyzing a PCR product from Escherichia coli genomic DNA (0.2 pg/μL). On the basis of the ideal electrochemical interface, our polyA-based biosensor exhibited excellent reusability and stability, which is important for potential applications in the onsite analysis for a wide range of targets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call