Abstract

Bacteria can form aggregates in synovial fluid that are resistant to antibiotics, but the ability to form aggregates in cerebral spinal fluid (CSF) is poorly defined. Consequently, the aims of this study were to assess the propensity of four bacterial species to form aggregates in CSF under various conditions. To achieve these aims, bacteria were added to CSF in microwell plates and small flasks at static and different dynamic conditions with the aid of an incubating shaker. The aggregates that formed were assessed for antibiotic resistance and the ability of tissue plasminogen activator (TPA) to disrupt these aggregates and reduce the number of bacteria present when used with antibiotics. The results of this study show that under dynamic conditions all four bacteria species formed aggregates that were resistant to high concentrations of antibiotics. Yet with static conditions, no bacteria formed aggregates and when the CSF volume was increased, only Staphylococcus aureus formed aggregates. Interestingly, the aggregates that formed were easily dispersed by TPA and significant (p < 0.005) decreases in colony-forming units were seen when a combination of TPA and antibiotics were compared to antibiotics alone. These findings have clinical significance in that they show bacterial aggregation does not habitually occur in central nervous system infections, but rather occurs under specific conditions. Furthermore, the use of TPA combined with antibiotics may be advantageous in recalcitrant central nervous system infections and this provides a pathophysiological explanation for an unusual finding in the CLEAR III clinical trial.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.