Abstract

and later found to be a cold-shock response common to many bacterial species. CspA of 7.4 kD, a major cold-shock protein in E. coli, has been shown to share structural similarity with a class of eukaryotic Y box proteins which have RNA-binding domains. Transient synthesis of CspA upon cold shock is mediated by increased stabilization of the mRNA at low temperatures. The proposed role of some cold-shock proteins including CspA in the bacterial adaptation to low temperatures is to function as a RNA chaperone in the regulation of translation. Some enzymes of psychrotrophic or psychrophilic bacteria exhibit unique features of a cold-adapted enzyme, high catalytic activity at a low temperature and rapid inactivation at a moderate temperature. A monomeric isocitrate dehydrogenase isozyme (IDH-II) of a psychrophilic bacterium, Vibrio sp. strain ABE-1, is a typical cold-adapted enzyme. In addition, this enzyme is induced at low temperatures. Low temperature-dependent expression of icdll encoding IDH-II is controlled by two different cis-elements located at the untranslated upstream region of the gene, one is a silencer and the other is essential for the low temperature response. The physiological role of IDH-II is evaluated by transforming E. coli with icdll. The growth rate of the E. coli transformants at low temperatures is dependent on the level of expressed IDH-II activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.