Abstract

Coenzyme B(12)-dependent acyl-CoA mutases are radical enzymes catalyzing reversible carbon skeleton rearrangements in carboxylic acids. Here, we describe 2-hydroxyisobutyryl-CoA mutase (HCM) found in the bacterium Aquincola tertiaricarbonis as a novel member of the mutase family. HCM specifically catalyzes the interconversion of 2-hydroxyisobutyryl- and (S)-3-hydroxybutyryl-CoA. Like isobutyryl-CoA mutase, HCM consists of a large substrate- and a small B(12)-binding subunit, HcmA and HcmB, respectively. However, it is thus far the only acyl-CoA mutase showing substrate specificity for hydroxylated carboxylic acids. Complete loss of 2-hydroxyisobutyric acid degradation capacity in hcmA and hcmB knock-out mutants established the central role of HCM in A. tertiaricarbonis for degrading substrates bearing a tert-butyl moiety, such as the fuel oxygenate methyl tert-butyl ether (MTBE) and its metabolites. Sequence analysis revealed several HCM-like enzymes in other bacterial strains not related to MTBE degradation, indicating that HCM may also be involved in other pathways. In all strains, hcmA and hcmB are associated with genes encoding for a putative acyl-CoA synthetase and a MeaB-like chaperone. Activity and substrate specificity of wild-type enzyme and active site mutants HcmA I90V, I90F, and I90Y clearly demonstrated that HCM belongs to a new subfamily of B(12)-dependent acyl-CoA mutases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.