Abstract

Bacterial transport and deposition play an important role in the assessment and prediction of subsurface pollution risks. Bacteria transport experiments were performed under unsaturated flow conditions in an aggregated porous medium at the laboratory column scale, to investigate how the inter- and intra-aggregated pore space of this medium could affect transport and deposition under unsaturated flow conditions, where inter- and intra-pore spaces are not fully activated. The results obtained through experimental observations and numerical simulations showed that some intra- and inter-pore space of this medium was excluded from bacteria transport and retention, as confirmed by the non-uniform transport of bacteria pathways in the aggregated porous media under unsaturated flow conditions. Capillary energy was higher the than other forces acting at bacteria air-water-solid interfaces. If this energy should contribute in increasing bacteria deposition under unsaturated conditions, similar to what has been reported for sandy media, similar overall retention of E. coli and R. rhodochrous was obtained under unsaturated flow conditions, suggesting that capillary energy was not the driving force for bacteria deposition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call