Abstract

The biotechnological application of microorganisms for rhizoremediation of contaminated sites requires the development of plant-microbe symbionts capable of plant growth promotion and hydrocarbon degradation. Here, we present a study aimed at isolating single microbial strains that are capable of promoting plant growth as well as rhizoremediation of diesel fuel hydrocarbons. Through genomic analyses and greenhouse-based experiments, we examined the synergistic interactions of Medicago sativa L. and Paraburkholderia tropica WTPI1 for enhanced rhizoremediation of diesel fuel-contaminated soils. Plant growth-based experiments confirmed that the inoculation of M. sativa with P. tropica led to a 99% increase in plant biomass. Furthermore, organic geochemical analysis revealed that 96% of all the distinctive diesel fuel hydrocarbons, including C10–C25n-alkanes, branched alkanes, cycloalkanes and aromatic hydrocarbons were degraded in the M. sativa + P. tropica treatment. These results will prove beneficial for biotechnological application of P. tropica WTPI1 for plant growth promotion and most importantly for environmental remediation of organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call