Abstract

Currently optical-based techniques for in vivo microbial population imaging are limited by low imaging depth and highly light-scattering tissue; and moreover, are generally effective against only one specific group of bacteria. Here, we introduce an imaging and therapy strategy, in which different bacteria actively eat the glucose polymer (GP)-modified gold nanoparticles through ATP-binding cassette (ABC) transporter pathway, followed by laser irradiation-mediated aggregation in the bacterial cells. As a result, the aggregates display ~15.2-fold enhancement in photoacoustic signals and ~3.0-fold enhancement in antibacterial rate compared with non-aggregated counterparts. Significantly, the developed strategy allows ultrasensitive imaging of bacteria in vivo as low ~105 colony-forming unit (CFU), which is around two orders of magnitude lower than most optical contrast agents. We further demonstrate the developed strategy enables the detection of ~107 CFU bacteria residing within tumour or gut. This technique enables visualization and treatment of diverse bacteria, setting the crucial step forward the study of microbial ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.