Abstract
Lithium sulfur (Li-S) batteries are attracting increasing interest for high-density energy storage. However, the practical application is limited by the rapid capacity fading over repeated charge/discharge cycles which is largely attributed to the formation and shuttling of soluble polysulfide species. To address these issues, we develop a hierarchical structure composite with triple protection strategy via graphene, organic conductor PEDOT, and nitrogen and phosphorus codoped biological carbon to encapsulate sulfur species (GOC@NPBCS). This unique hierarchical structure can effectively immobilize the sulfur species while at the same time improve the electrical conductivity and ensure efficient lithium ion transport to enable excellent Li-S battery performance. In particular, the biological carbon derived from natural bacteria features inherent nitrogen and phosphorus codoping with a strong absorption to lithium polysulfides, which can greatly suppress the dissolution and shuttling of polysulfides that are responsible for rapid capacity fading. With these synergistic effects, the GOC@NPBCS cathode exhibits exceptionally stable cycling stability (an ultralow capacity fading rate of 0.045% per cycle during 1000 cycles at the current rate of 5 C), high specific capacity (1193.8 mAh g-1 at 0.5 C based on sulfur weight), and excellent rate capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.