Abstract

To identify the bacteria that play a major role in the aerobic degradation of petroleum polynuclear aromatic hydrocarbons (PAHs) in a marine environment, bacteria were enriched from seawater by using 2-methylnaphthalene, phenanthrene, or anthracene as a carbon and energy source. We found that members of the genus Cycloclasticus became predominant in the enrichment cultures. The Cycloclasticus strains isolated in this study could grow on crude oil and degraded PAH components of crude oil, including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. To deduce the role of Cycloclasticus strains in a coastal zone oil spill, propagation of this bacterial group on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks that were 1 m wide by 1.5 m long by 1 m high. The tanks were two-thirds filled with gravel, and seawater was continuously introduced into the tanks; the water level was varied between 30 cm above and 30 cm below the surface of the gravel layer to simulate a 12-h tidal cycle. The number of Cycloclasticus cells associated with the grains was on the order of 10(3) cells/g of grains before crude oil was added to the tanks and increased to 3 x 10(6) cells/g of grains after crude oil was added. The number increased further after 14 days to 10(8) cells/g of grains when nitrogen and phosphorus fertilizers were added, while the number remained 3 x 10(6) cells/g of grains when no fertilizers were added. PAH degradation proceeded parallel with the growth of Cycloclasticus cells on the surfaces of the oil-polluted grains of gravel. These observations suggest that bacteria belonging to the genus Cycloclasticus play an important role in the degradation of petroleum PAHs in a marine environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call