Abstract

The implementation of sustainable agriculture encompasses practices enhancing the activity of beneficial soil microorganisms, able to modulate biogeochemical soil cycles and to affect soil fertility. Among them, arbuscular mycorrhizal fungi (AMF) establish symbioses with the roots of most food crops and play a key role in nutrient uptake and plant protection from biotic and abiotic stresses. Such beneficial services, encompassing improved crop performances, and soil resources availability, are the outcome of the synergistic action of AMF and the vast communities of mycorrhizospheric bacteria living strictly associated with their mycelium and spores, most of which showing plant growth promoting (PGP) activities, such as the ability to solubilize phosphate and produce siderophores and indole acetic acid (IAA). One of the strategies devised to exploit AMF benefits is represented by the inoculation of selected isolates, either as single species or in a mixture. Here, for the first time, the microbiota associated with a commercial AMF inoculum was identified and characterized, using a polyphasic approach, i.e., a combination of culture-dependent analyses and metagenomic sequencing. Overall, 276 bacterial genera were identified by Illumina high-throughput sequencing, belonging to 165 families, 107 orders, and 23 phyla, mostly represented by Proteobacteria and Bacteroidetes. The commercial inoculum harbored a rich culturable heterotrophic bacterial community, whose populations ranged from 2.5 to 6.1 × 106 CFU/mL. The isolation of functional groups allowed the selection of 36 bacterial strains showing PGP activities. Among them, 14 strains showed strong IAA and/or siderophores production and were affiliated with Actinomycetales (Microbacterium trichotecenolyticum, Streptomyces deccanensis/scabiei), Bacillales (Bacillus litoralis, Bacillus megaterium), Enterobacteriales (Enterobacter), Rhizobiales (Rhizobium radiobacter). This work demonstrates for the first time that an AMF inoculum, obtained following industrial production processes, is home of a large and diverse community of bacteria with important functional PGP traits, possibly acting in synergy with AMF and providing additional services and benefits. Such bacteria, available in pure culture, could be utilized, individually and/or in multispecies consortia with AMF, as biofertilizers and bioenhancers in sustainable agroecosystems, aimed at minimizing the use of chemical fertilizers and pesticides, promoting primary production, and maintaining soil health and fertility.

Highlights

  • Worldwide, a major shift is taking place in agriculture, in order to meet the growing global demand for a safe production of high-quality food, able to maintain or enhance environmental quality and to conserve natural resources for future generations

  • Arbuscular mycorrhizal fungi (AMF, Glomeromycota) are recognized as ecologically and economically important elements of sustainable food production systems, given the key role played in plant nutrition and health, by reducing the input of chemical fertilizers and pesticides (Smith and Read, 2008)

  • Molecular investigations allowed the description of the complexity and diversity of bacterial communities associated to AMF spores belonging to different species and isolates, suggesting that their differential occurrence may affect the performance of the relevant taxa in terms of infectivity and efficiency, given their important functional roles as PGPB (Roesti et al, 2005; Long et al, 2008; Agnolucci et al, 2015)

Read more

Summary

Introduction

A major shift is taking place in agriculture, in order to meet the growing global demand for a safe production of high-quality food, able to maintain or enhance environmental quality and to conserve natural resources for future generations. AMF symbionts facilitate plant nutrient uptake, mainly phosphorus (P), nitrogen (N), sulfur (S) potassium (K), calcium (Ca), copper (Cu), and zinc (Zn), by means of a large network of extraradical hyphae spreading from colonized roots to the surrounding soil and functioning as a supplementary absorbing system (Giovannetti et al, 2001; Avio et al, 2006) They protect plants from biotic and abiotic stresses (Augé, 2001; Evelin et al, 2009; Sikes et al, 2009), provide essential ecosystem services (Gianinazzi et al, 2010), and affect the biosynthesis of beneficial plant secondary metabolites, contributing to the production of safe and high quality food (Sbrana et al, 2014; Avio et al, 2018). Siderophores have been reported to possess biocontrol activity against soilborne diseases, by means of iron competition (Thomashow et al, 1990; Glick, 1995; Whipps, 2001), inhibiting the development of deleterious plant pathogens (Davison, 1988; Arora et al, 2001)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call