Abstract
Training artificial intelligence (AI) systems to perform autonomous experiments would vastly increase the throughput of microbiology; however, few microbes have large enough datasets for training such a system. In the present study, we introduce BacterAI, an automated science platform that maps microbial metabolism but requires no prior knowledge. BacterAI learns by converting scientific questions into simple games that it plays with laboratory robots. The agent then distils its findings into logical rules that can be interpreted by human scientists. We use BacterAI to learn the amino acid requirements for two oral streptococci: Streptococcus gordonii and Streptococcus sanguinis. We then show how transfer learning can accelerate BacterAI when investigating new environments or larger media with up to 39 ingredients. Scientific gameplay and BacterAI enable the unbiased, autonomous study of organisms for which no training data exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.