Abstract
Objective and designBacSp222 bacteriocin is a bactericidal and proinflammatory peptide stimulating immune cells to produce selected cytokines and NO in NF-ĸB dependent manner. This study aims to identify the receptor which mediates this activity.MethodsWe applied fluorescently labeled BacSp222 and a confocal microscopy imaging to analyze the direct interaction of the bacteriocin with the cells. Reporter HEK-Blue cells overexpressing human toll-like receptors (TLR2, TLR4, TLR5 or TLR2/TLR1 and TLR2/TLR6 heterodimers) were stimulated with BacSp222, and then the activity of NF-ĸB-dependent secreted embryonic alkaline phosphatase (SEAP) was measured. In turn, formylated peptide receptor (FPR) or TLR2 antagonists were used to verify bacteriocin-stimulated TNF production by murine monocyte-macrophage cell lines.ResultsBacSp222 undergoes internalization into cells without disturbing the cell membrane. FPR antagonists do not affect TNF produced by BacSp222-stimulated murine macrophage-like cells. In contrast, BacSp222 stimulates NF-ĸB activation in HEK-Blue overexpressing TLR2 or TLR2/TLR6 heterodimer, but not TLR2/TLR1, TLR4 or TLR5 receptors. Moreover, TLR2-specific antagonists inhibit NF-ĸB signaling in BacSp222-stimulated HEK-Blue TLR2/TLR6 cells and reduce TNF release by BacSp222-treated RAW 264.7 and P388.D1.ConclusionsBacSp222 is a novel ligand for TLR2/TLR6 heterodimer. By binding TLR complex the bacteriocin undergoes internalization, inducing proinflammatory signaling that employs MyD88 and NF-ĸB pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.