Abstract

Preparing M-type barium hexaferrite and improving the magnetic response of natural ferrites by incorporating barium carbonate (BaCO3) is ever-demanding. Series of barium carbonate doped ferrites with composition (100−x)Fe3O4·xBaCO3 (x=0, 10, 20, 30wt%) are prepared through solid state reaction method and sintered gradually at temperatures of 800 and 1000°C. Nanoparticles of natural ferrite and commercial BaCO3 are used as raw materials. Impacts of BaCO3 on structural and magnetic properties of these synthesized ferrites are inspected. The obtained ferrites are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) at room temperature. Uniform barium hexaferrite particles in terms of both morphology and size are not achieved. The average crystallite size of BaFe12O19 is observed to be within 30–600nm. The sintering process results phase transformation from Fe3O4 (magnetite) to α-Fe2O3 (hematite) and the formation of hexagonal barium ferrite crystals. The occurrence of barium crystal is found to enhance with the increase of BaCO3 concentrations up to 20wt% and suddenly drop at 30wt%. Saturation and remanent magnetization of the doped ferrites are significantly augmented up to 16.37 and 8.92emug−1, respectively compared to their pure counterpart. Furthermore, the coercivity field is slightly decreased as BaCO3 concentrations are increased. BaCO3 mediated improvements in the magnetic response of natural ferrites are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.