Abstract

We demonstrate a backward transport of polystyrene (PS) particles (713-nm in diameter) in a pressure-driven fluidic flow using an optical fiber with a diameter of 710 nm. When a light of 980-nm wavelength was launched into the fiber in the opposite direction of the flow, the PS particles near the fiber were attracted onto the fiber and transported along the propagation direction of the light. The relationship between the velocity of the transported PS particles and the velocity of the flow at different input optical powers was investigated. Numerical analyses on both the optical field and the fluid field were carried out. The particle-size dependence of backward transport capability has also been investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.