Abstract

A discussion is given of the initial speeds at which superconducting material changes state according to the London electrody namics. These transitions are taken to occur in the form of phase boundary motions. Phase changes from the normal to the superconducting state and vice versa are considered for the cases in which the external magnetic field is radiated to the boundary of the superconducting material. A distinct difference is found in transition rates depending on whether the transition is from the superconducting or from the normal state. In another case considered, the transition from normal to super is studied when the superconducting material is bounded by a good conductor. In all cases, constant critical field is taken as the switching criterion. The mathematical treatment involves the approximate solution of free boundary problems and mixed hyperbolic—parabolic boundary value problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.