Abstract

An LLC resonant converter has the advantages of simple structure and soft switching. It can enable bidirectional power transmission, but it is difficult to realize a normalized gain greater than one under backward mode (backward step-up mode). Cascaded dc/dc converters or topological changes can solve this problem, but additional switches and components are required and losses are added. Without changing the LLC resonant converter’s basic topology, this paper proposes a variable duty-cycle control strategy of primary side switches for backward step-up mode. Using variable duty-cycle control, the LC resonant tank can be charged, and then the backward step-up mode can be realized. Soft switching characteristics of some primary side switches and all secondary side switches are guaranteed. In this study, the working principle of an LLC resonant converter under bidirectional control strategy was analyzed, and the backward step-up control was analyzed in detail. The voltage gain and the boundary of continuous conduction mode (CCM) and discontinuous conduction mode (DCM) were derived. A synchronous rectification method related to the backward step-up control is proposed. The control strategy was verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call