Abstract
We consider a class of backward stochastic differential equations (BSDEs) driven by Brownian motion and Poisson random measure, and subject to constraints on the jump component. We prove the existence and uniqueness of the minimal solution for the BSDEs by using a penalization approach. Moreover, we show that under mild conditions the minimal solutions to these constrained BSDEs can be characterized as the unique viscosity solution of quasi-variational inequalities (QVIs), which leads to a probabilistic representation for solutions to QVIs. Such a representation in particular gives a new stochastic formula for value functions of a class of impulse control problems. As a direct consequence, this suggests a numerical scheme for the solution of such QVIs via the simulation of the penalized BSDEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.