Abstract
A passive multiple-trailer system provides various practical advantages for multi-functional service robots. However, motion control is difficult because the kinematic model is highly nonlinear. The kinematic design of a trailer system was proposed in prior research of ours. In this paper, it is shown how the backward motion of a robot with n passive trailers can be controlled. Once the desired trajectory of the last trailer is computed, the control input of the pushing robot is obtained through the proposed control scheme. Some experimental issues on reversing the trailer system are addressed. This paper provides an answer to the following question: “Does the system work well even if there are sensing or modeling errors?” Although it is difficult to obtain general analytic solutions for the above research question, a practical answer will be explored though simplified analysis and experiments. Experimental verifications are carried out using a mobile robot with three passive trailers. The experimental results show that backward-motion control can be successfully carried out by applying the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.