Abstract
This paper scrutinizes various stylized facts related to the minmax theorem for chess. We first point out that, in contrast to the prevalent understanding, chess is actually an infinite game, so that backward induction does not apply in the strict sense. Second, we recall the original argument for the minmax theorem of chess—which is forward rather than backward looking. Then it is shown that, alternatively, the minmax theorem for the infinite version of chess can be reduced to the minmax theorem of the usually employed finite version. The paper concludes with a comment on Zermelo's (1913) nonrepetition theorem. Journal of Economic Literature Classification Number: C72.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.